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Some take-home points

• Percolation (and more generally probability) and stat-phys go well together.

• In Statistical Physics the divide between “classical” and “quantum” melts.

quantum degrees of freedom (spinors, Majorana fermions) pop up, unexpect-
edly, in the analysis of “very classical” stat mech models, and vice-versa.

Some celebrated examples:
∗ 2D Ising (Onsager, Kaufmann, ... Schultz-Mattis-Lieb, Kadanoff, ....)

∗ 6 vertex models ... (Yang, Lieb, Baxter, ....)

∗ QFT ... (both RG and rigorous non-perturbative studies ... )

A general relation, that will be recalled here,

• Ground states of quantum d-dimensional systems⇐⇒
thermal states of classical d+ 1-dimensional systems. Consequently:

• Rather different looking models, some classical and some quantum,
with different forms of symmetry breaking, share a common mathematical scaffolding.

• And it seems that the simplest way to explain each is by combining the different perspectives.

A key role in the above is played by a long-recognized common dichotomy associated
with 2D loop-soup models.
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Talk abstract Percolation meets Quantum ...

A random cluster system that is an extension of a continuous-time percolation
model is naturally expressed in terms of a 1+1 dimensional loop-soup measure, whose
loops form the inner or outer boundaries of the model’s connected clusters.

The same random loop system shows up in a stochastic geometric representation
of three distinct quantum spin models.

Combining insights based on by the different “projections” of the common loop
models one arrives at a structural explanation of threshold parameter values for three
very different phenomena:

i) discontinuity of the phase transition in a planar classical random cluster model
or equivalently: degeneracy and symmetry breaking in the ground state(s) of an

infinite self-dual quantum Q-state Potts spin chain, at Q > 4 .

iii) dimerization of the ground states of a flattened version of the quantum
Heisenberg model at S > 1/2 ,

iv) Nèel order in the ground state of the a-symmetric HXXZ

quantum spin chain at ∆ > 0 .

(Talk based on a joint 2020 paper with H. Duminil-Copin and S. Warzel,
with input from previous works by G. Ray and Y. Spinka (2020) on Q state Potts models, and
Aizenman and Nachtergaele (1994) on quantum spin chains.) 3 / 12



A self-dual continuum percolation model and the related continuum Q state Potts spin system

Starting from the partition of R2 into A/B stripes,
consider the continuum percolation model in which
randomly placed “edges” over A strips serve as B-
connecting paths disrupting A connection, and vice
versa, at edge Poisson densities (λA, λB)

Next - consider a Q-state “spin” model in which the connected domains of A are
each assigned one out of Q states, with the partition function (attention: β ≡ Lvert)

Z(Lhor, Lvert) =

∫
QNA(ω)ρ

λA,λB
(dω) ≈

∫ √
Q
N`(ω)

ρ
λA
√
Q, λB/

√
Q

(dω)

where NA(ω) = #{connected A-clusters} and N` = NA +NB

When λA
√
Q = λB/

√
Q the model is self dual(!)

An interesting question: under what conditions will this symmetry be broken?
Note: the duality symmetry coincides here with shift invariance !

For those familiar with the similar question for Q state Potts model∗, it will be
natural to expect the transition to occur at Qc = 4 . And indeed that is so [ADW].
(∗ [Yang, Baxter, Lieb,...,Duminil-Gagnebin-Harel-Manolescu-Tassion ’16, Ray-Spinka‘19,...])
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A quantum model with the same loop structure The quantumQ state Potts model with transversal field

Ising spin chain (on Z) with a transverse magnetic field (Q = 2)

Single ‘q-bit’:

Hilbert spaceH(2) = span{|+〉, |−〉}.

Pauli spin operators: σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
The Hilbert space for a quantum spin chain: H =

⊗
j∈ZH

(2)
j

The Hamiltonian (acting onH): H = −
∑
j

[
σzj σ

z
j+1 + σxj

]
with Rj ≡ 1⊗ ...1⊗R⊗ 1...⊗ 1

The Q-valued quantum Potts model:

σzj =⇒ the diagonal matrix Dj =

1 0 0...
0 2 0...
0 0 3...


σxj =⇒ the corresponding flip operator, and σzj σ

z
j+1 =⇒ δDj , Dj+1

The quantum model’s tr e−βHQ,L coincides with the partition function of
the above continuum 1 + 1 dimensional classical Potts model in [0, β]× [0, L].

For β >> 1 the classical Gibbs state yields the quantum system’s low
temperature dependence, and in the limit β →∞ its ground state(s)
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A general (d+ 1) dimensional representation of quantum spin systems’ thermal/ground states

Feynman, Dyson, Ginibre ‘71, Suzuki-Trotter ‘76, .., Aiz.-Lieb ‘90, Conlon-Solovej ‘91, Toth ‘93, Aiz.- Nacht. ‘94.,...
Aiz., Duminil-Copin Warzel ‘20, ... Björnberg, Mühlbacher, Nachtergaele, Ueltschi ‘21

Warmup: eβ(K−1) =
∞∑
n=0

pnK
n ≡ E(Kn) with pn = βn

n!
e−β

(the Poisson distribution)

e
β
∑
b∈E(Λ)(Kb−1)

=

∫
Ω(Λ,β)

ρ(dω) T

 ∏
(b,t)∈ω

K(b, t)

 ω⇔

Ω(Λ, β) – the set of countable subsets of E(Λ)× [0, β]
ρ(dω) – the probability measure under which ω forms a Poisson process over Ω,

of intensity dt along each “vertical” line {b} × [0, β].

One gets:

tr e−βH/2Fe−βH/2 =

∫
Ω(Λ,β)

ρ(dω) tr T

E.g., for quantum spin models thermal expectation values may be expressed in terms of an integral over
histories of {Szx} (in “imaginary time”), i.e. configurations of σ3(x, t) defined over [−L1, L2],×[0, β].

Each quantum operator F (acting on the Hilbert space associated with Λ) is represented by a
specific action on this functional integral (typically at t = 0).
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The loop representation forHAF = −
∑

(2S + 1)P
(0)
u,u+1

Now apply this to a chain of spin S quantum spins with HAF = −
∑

(2S + 1)P
(0)
u,u+1 (Barber-Batchelor ‘89

which in case S = 1/2 coincides with the standard Heisenberg anti-ferromagnet. Affleck ‘90, Klumper ‘90.)

In the basis of e.funct’s of {Szu}: (2S + 1)P
(0)
u,v =

S∑
m,m′=−S

(−1)
m−m′ |m,−m〉〈m′,−m′| .

In this case, the signs can be gauged away (!) through U = eiπη/2 at η =
∑
u(−1)uSzu.

The above approach yields a stochastic geometric representation of the thermal states in terms of a
system of random loops, along each of which Sz(u, t) is restricted to ±m at a constant m ∈ [−S, S],
with ± flipping upon each “time reversal” (AN94). In this represenation:

e−βHAF = eβ|E(Λ)|
∫

Ω
ρ(dω)

∗∏
j

K(bj ,tj)

tr T

 ∏
(b,t)∈ω

K(b, t)

 = (2S + 1)N1(ω)

∴ tr e−βHAF =

∫
Ω(Λ,β)

ρ(dω) (2S + 1)N1(ω)

and the thermal spin correlations can be presented as: 〈σzuσzv〉β = (−1)|u−v|CS Pr(u ω
←→v)

Note the similarity with the self-dual Qrandom cluster model with (2S + 1)←→
√
Q .
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The loop-soup dichotomy LRO (symmetry breaking), or else slow decay of correlations

Theorem 1 (AN‘94) In the infinite-volume limit, any dense periodic loop-soup measure, with a local
finite-energy condition, exhibits
either slow decay of correlations (connectivity) or long range order.

More explicitly: either ∑
u∈L1

|x| τ(0, x) =∞

or else there exists a bounded measurable function m(ω) with

E(Txω)) = (−1)x .

Key idea: If the loop configuration includes (a.s.)∞ set of nested loops then option 1. Otherwise option 2.

Theorem 2 In the following models (the first classical the other two quantum)
the classical Q state Potts model at βc
for the ground states of HAF
for the ground states of HXXZ at S = 1

2

LRO (option 2) holds exactly for


Q > 4

S > 1/2

∆ > 1

HPotts =
∑
u δσu,σu+1 option (2)⇔ discontinuity in the spontaneous magnetization

HAF = −
L−1∑

u=−L+1

P
(0)
u,u+1 option (2)⇔ dimerization

H
S=1/2
XXZ =

L−1∑
u=−L+1

[
σu · σu+1 + (∆− 1)σzuσ

z
u+1

]
; option (2)⇔ Ne’el order (staggered magnetization)
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What makesQ = 4 into a threshold value?

What makes
√
Q = (2S + 1) = 2 into a threshold value?

Two tracks to the answer (developed initially in the context of Q state Potts models):

I) Bethe ansatz analysis of the 6-vertex models (extended to handle also the model’s 1–directional
continuum limit) (carried rigorously in Duminil-Copin, Gagnebin, Harel, Manolescu, and Tassion ‘16).

II) An old hint (Baxter–Kelland–Wu ‘78):

Writing
√
Q = eλ + e−λ

[
or correspondingly (2S + 1) = eλ + e−λ

]
(∗)

allows to express the factor
√
Q
N1(ω)

= (eλ + e−λ)N1(ω) as a product of “local action” terms.

BKW noted that the solution of (∗) for λ changes its nature (from imaginary to real) at
√
Q = 2,

and proposed that this should be significant.

The challenge to develop an argument based on (II) was finally met in
G. Ray, Y. Spinka A short proof of the discontinuity of phase transition in the planar random-cluster model
with q > 4, (CMP 2020).

A key role in the Ray-Spinka argument was played by a related random height function.

• In our joint work with Hugo Duminil-Copin and Simone Warzel a somewhat analogous argument
was developed for the quantum spin chains with HAF .

• The analysis revealed and utilized an emergent relation with the HXXZ spin models at S = 1/2.
(Coincidence in their spectra was noted by other means before.)
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What makesQ = 4 into a threshold value?

The height function associated with a specified
configuration of rungs and loop orientations, and the
related binary pseudo spin (defined by the arrows).

Note: vertical discontinuity in the pseudo spin τ
implies the presence of a rang of ω.
However, ω also includes other rungs (marked in
small ovals) whose presence is transparent to τ . Their
knowledge is essential for the full reconstruction of
the loops of ω, but not for the height function.

Lemma 1: If for a given Q > 4, and λ satisfying
√
Q = eλ + e−λ the loop’s limiting measure is

translation invariant then: i) its typical configurations include an infinite family of nested loops
ii) the distribution of the corresponding height function is not an even function of λ.

(Proof based on percolation analysis, as in Duminil-Gagnebin-Harel-Manolescu-Tassion ’16)

Lemma 2: Under the above assumption, tor real λ the distribution of the corresponding height function is
an even function of λ.
(Proof idea: the hight function can be determined from just the pseudo spin τ (it does not require the full
loop information). But the distribution of τ is that of the spin 1/2 chain under the Hamiltonian HXXZ at
∆ = cosh(λ).)

The combination of these two properties allows to rule out delocalization for the height function at
Q > 4, and by implications to prove symmetry breaking / LRO at the corresponding values of Q / S / ∆.
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